Criteo_x4#

Note that we have set two evaluation protocols Criteo_x4_001 and Criteo_x4_002 for this benchmark, which vary in the settings of rare feature filtering and embedding dimensions.

Criteo_x4_001

Please use the following evaluation settings for this benchmark:

  • Dataset split: Criteo_x4

  • Rare features filtering: min_categr_count=10

  • Embedding size: 16

Criteo_x4_002

Please use the following evaluation settings for this benchmark:

  • Dataset split: Criteo_x4

  • Rare features filtering: min_categr_count=2

  • Embedding size: 40

🔥 See the benchmarking results on Criteo_x4_001:

from plots import show_table, show_plot
show_plot("criteo_x4_001.csv")
show_table("criteo_x4_001.csv")
Rank Year Publication Model AUC Logloss Running Steps Contributor
Loading... (need help?)

🔥 See the benchmarking results on Criteo_x4_002:

from plots import show_table, show_plot
show_plot("criteo_x4_002.csv")
show_table("criteo_x4_002.csv")
Rank Year Publication Model AUC Logloss Running Steps Contributor
Loading... (need help?)